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Large cities account for a significant share of national population and wealth, and exert high pressure on local
and regional resources, exacerbating socioenvironmental risks. The replacement of natural landscapes with higher
heat capacity materials because of urbanization and anthropogenic waste heat are some of the factors contributing
to local climate change caused by the urban heat island (UHI) effect. Because of synergistic effects, local climate
change can exacerbate the impacts of global warming in cities. Disentangling the contributions to warming in cities
from global and local drivers can help to understand their relative importance and guide local adaptation policies.
The canopy UHI intensity is commonly approximated by the difference between temperatures within cities and the
surrounding areas. We present a complementary approach that applies the concept of common trends to extract
the global contributions to observed warming in cities and to obtain a residual warming trend caused by local and
regional factors. Once the effects of global drivers are removed, common features appear in cities’ temperatures
in the eastern part of the United States. Most cities experienced higher warming than that attributable to global
climate change, and some shared a period of rapid warming during urban sprawl in the mid-20th century in the
United States.
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Introduction

Three major anthropogenic factors and their inter-
actions influence climate at the city scale: the
effects on global climate of the accumulation of
radiative active substances in the atmosphere; the
impacts on regional climate of air pollutants, such as
aerosols and black carbon; and the urban heat island
(UHI) produced by urbanization, which entails the
replacement of natural landscapes by denser, higher
thermal capacity materials and structures, the gen-
eration of urban canyons, and higher anthropogenic
heat release.1–3 Urban climate is also determined
by natural factors. Some are static (i.e., time invari-
ant), such as geographical location and altitude,
while others are dynamic, such as the Atlantic Mul-

tidecadalOscillation (AMO) and other regional and
large-scale climate variability processes.4

The UHI effect is given by the difference in
the warming of a city with respect to its preur-
ban conditions.5 It can be explained in terms of
surface energy balance processes related to short-
and long-wave radiation exchange, and latent,
sensitive, and conductive heat flows.6,7 The mag-
nitude of the UHI is a function of population,
urban morphology, and physical characteristics,
such as city size, compactness, gross building vol-
ume, and anisometry (city shape), as well as vege-
tation and waste heat release.3,4,8–11 In the case of
large cities, UHI warming can be similar in mag-
nitude (about 2.5–4.5 °C) to that expected under
high emissions climate change scenarios for the end
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of this century.4,12,13 The UHI is commonly char-
acterized by great spatial variability, large differ-
ences in structure and intensity, and possibly multi-
ple UHIs across a single city. UHI intensities tend to
be higher near the downtown area and to decrease
toward the suburbs and urban periphery. The UHI
varies greatly between seasons and throughout the
day, being typically stronger at night.14 The three
types of UHI commonly considered in the litera-
ture are the surface, canopy, and boundary layer
UHI. Remote sensing is typically used to inves-
tigate the surface UHI, while measurement of
the boundary UHI is based on sensors installed
in towers, tethered balloons, or radiosondes. The
canopy UHI is characterized by comparing air
temperature records from weather stations located
within a city and its rural surroundings.7,14,15
Some approaches to approximate the UHI inten-
sity include empirical functions relating popu-
lation counts and urban warming,8,16,17 using
urbanization indicators,18 comparing the values
of the regional and local trend slope estimates,5
contrasting surface temperatures from reanalysis
reconstructions19,20 (e.g., climate model simula-
tions that do not account for land-use differ-
ences so that the differences between observations
and model simulations should be caused by the
UHI), analyzing climatemodel simulations,21,22 and
using satellite data to derive urban land surface
temperatures.11,23 The proposed method and the
analysis presented here refer to the canopy UHI.
Several studies found that the logarithm of a city’s

population is positively correlated with the UHI
intensity such that more populous cities experience
larger changes in local climate.8,16,24 This relation-
ship can be modulated by the background climate
and other factors, in particular by the total amount
of precipitation.25 Urban sprawl is a typical mode
of expansion and can lead to a rapid expansion of
the UHI over the city, although characteristics, such
as urban design, with low compactness ratio can
mitigate it.26,27 By contrast, compact cities may lead
to a more intense UHI that extends over a smaller
area.27 Urban sprawl has also been associated with
increases in annual extreme heat events.28
The U.S. population increased more than 40-fold

since 1800, from about 5million to over 300million
in 2010, implying a significant transformation of
the physical landscape and ecological systems.29,30
About 80% of the U.S. population lived in urban

areas in 2010 that covered only 3.1% of the total
land area.31 While urban development started in
the northern and coastal southern states and then
spread to other parts of the country, the peak of
the expansion and densification inmost regions was
reached in the period 1950–1975.29 Population is
highly correlated with urban built area,32 and popu-
lation growth has followed the urbanization expan-
sion and densification patterns.29 These changes
were accompanied since the 1920s by urban sprawl,
which reached its period ofmost rapid increase after
WWII and continued until the mid-1990s.33
The literature on detection and attribution of

urban warming is rapidly expanding, in part moti-
vated by the potential bias that the UHI effect in
cities can impart to average global and regional
temperatures. Also of interest is the goal to quan-
tify the UHI effect and to inform climate adapta-
tion policy at the urban scale.34,35 Efforts have been
devoted to evaluate the magnitude of the bias the
UHI could impart to the global warming trend and
to devise ways to remove it.16,36 The effect of the
UHI on local temperatures is undisputed, but there
is no consensus about the extent of its influence
on regional and large-scale temperatures.16,37 The
contribution of the Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel
on Climate Change (IPCC) concluded that the UHI
effect on temperatures is negligible on large-scale
trends. For global temperature, it is unlikely that it
could represent more than 10% of the centennial
warming trend. However, the influence of the UHI
could be much larger on regional temperatures.38
Recently, the study of the effects of the UHI on
regional temperatures has focused on China, given
its rapid development and high rates of urbaniza-
tion. Some studies have found that the effect of UHI
on the warming trend at the national level could
be up to 0.14 °C per decade, although studies using
other methods suggest a more modest influence on
the warming trend of 0.03–0.05 °C per decade.37
For Northern China, an urban warming trend of
0.11 °C per decade was detected, which accounts for
about 37.9% of the total warming in the region.34,38
While the UHI has a large impact on local temper-
atures, in the case of area-weighted annual mean
temperatures for the continental United States, its
effect has been deemed by some authors as negligi-
ble (about 0.06 °C),16,39 although others have found
this effect to be considerable, contributing up to
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0.27 °C per century.19 At the local and city scales,
the UHI effects are much larger and can account
for significant shares of the total warming trend. In
New York City, about a third of the warming expe-
rienced since 1900 has been attributed to the UHI
intensification.40 This warming is spatially hetero-
geneous, and not easily explained in relation to land
surface characteristics, as exemplified by the simi-
larity between the rate of warming in Central Park
and that in other parts of the city. In the case of
cities in developing countries, the share of warming
explained by the UHI effect can be much larger, for
example, in Beijing andWuhan,where urbanwarm-
ing accounts for about 65–80% of the total warming
over the 1961–2000 period.41
In contrast with some previous studies, we focus

on removing the effect (bias) in local temperatures
that can be attributed to global climate change in
order to produce a residual trend that is mainly
imparted by local/regional forcing factors. Hence,
our approach is similar in spirit to a signal extrac-
tion problem. For this purpose, we draw on recently
proposed time-series methods for the attribution
of global climate change based on the existence of
common trends between globally aggregated radia-
tive forcing and temperature series. The attribu-
tion of global climate change has been an active
topic of research during the last decades42 and has
shown the existence of a clear signal that can be
traced back to globally aggregated anthropogenic
forcing in a variety of climate variables, from global
to regional scales.42–46 However, this type of attri-
bution studies at scales finer than hemispheric are
based almost exclusively on the results from phys-
ical climate models, with very few exceptions.47
Here, we focus on extending current observations-
based global climate change attribution methods to
purge the global climate change signal from urban
annual surface air temperatures and to characterize
in more depth the residual warming trend. We use
UHI detection and attribution methods to investi-
gate the possible contribution of local forcing fac-
tors to the residual warming trend. This is relevant
from a climate research perspective as it allows a
better understanding of the contributions of urban-
ization processes and of the effects of increases in
global radiative forcing factors at the local scales.
It is also relevant from a decision-making perspec-
tive as it can help to define city and national miti-
gation and adaptation policies. Recent studies have

stressed the importance of assessing local and global
climate change in defining the economic impacts in
cities, in which more than half of the global pop-
ulation lives and about of 80% of global GDP is
produced.12

Methods and data

Attribution of the global warming trend at the
city level and estimation of the residual trend
due to local and regional forcing factors
Commonly used procedures tailored to estimate the
magnitude of the warming caused by the canopy
UHI effect are based on the differences between
temperatures for stations locatedwithin and outside
the city. However, this does not allow to purge the
global warming signal from that caused by local
and regional factors that contribute to the observed
warming, nor to extract features of its temporal
evolution. Moreover, it does not consider the effects
of large-scale natural variability. The selection
of rural stations was shown to be complex and
potentially has nontrivial effects on the resulting
estimates.48 Also, the comparison between rural
and urban stations can introduce an unnecessary
noise component present in temperatures from
weather stations outside of the city. Our proposed
methodology addresses some of these problems and
is easy to implement. It also extends the literature
on the attribution of global climate change to the
urban/local scales and connects it to local-scale
processes, such as the UHI.
We focus on two characteristics of the warm-

ing trend to separate the effects of local and global
factors in city-level temperatures: the magnitude of
the warming and the shape of the warming trend.
These characteristics are investigated by comparing
local-scale (city) and large-scale temperatures series
obtained fromwider regions containing the selected
cities.
We first investigate the contribution of global

factors to the warming trend of city-level temper-
atures by testing for the existence of a common
trend via a cotrending test49 applied to regional and
local temperatures and some measures of aggregate
total and anthropogenic radiative forcing series. The
existence of a common trend suggests that at least
part of the secular movement contained in regional
and local temperatures is produced by global-scale
changes in the Earth’s energy balance.Hence, part of
the observed warming at the different scales is then
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attributable to globally aggregated anthropogenic
forcing factors.
For the local temperature series, this common

trend can be modulated by the superimposition
of other warming trends caused by the local and
regional effects of external forcing factors, includ-
ing urbanization and land-use change.34 Observed
regional and local temperatures can differ signifi-
cantly over some periods of time and this can be
explained by the evolution of relevant local and
regional determinants.
We shall present a regression-based method to

isolate and analyze the features of the warming
trends in local temperature series. To illustrate the
proposed method, we analyze 30 cities and discuss
the similarities and differences about how the evo-
lution of local factors, such as urbanization, could
have affected urban climate within some geograph-
ical regions. Consider the following calculation of
regional average temperature:

Treg
t =

n∑

i=1
ωiT loc

t,i , (1)

where ωi are area weights and Treg
t is the area-

weighted regional temperature and Tloc
t,i (i= 1,…,n)

the local temperature for location (or grid cell) i. If
ωi = ω for all i (all grid cells have the same area)
and ω is normalized to 1, then (1) simplifies to
Treg
t = 1

n
∑n

i = 1 T
loc
t,i . As with any time series, Treg

t
can also be decomposed to trend (τt ), cycle (ct ), and
irregular (εt ) components:

Treg
t = α + τt + ct + εt . (2)

Focusing first on the trend component, we have:

τt = 1
n + k

k∑

j = 1
τut, j +

1
n + k

m+k∑

l = 1

τ
r f
t,l , (3)

where n is the total number of temperature series in
the selected region, k andm are the number of urban
and nonurban locations, respectively, and k + m =
n. The selected region should be large enough that
n is much larger than k. Note that while all temper-
ature series in the selected region contain a global
warming trend, city temperatures can have both
local and global warming trends and thus the total
number of trends is n + k. This decomposition can
be seen as a modified version of Lowry’s additive

scheme50 in which both urban and rural tempera-
tures are a function of background climate (repre-
sented here by the common global warming trend),
the effects of local factors, and, for cities, the effects
of urbanization. The trend τt is a weighted average
of the warming trends due to urban (local) factors
τut, j and to large-scale climate change τ

r f
t,l , which is

imparted by changes in the globally averaged total
radiative forcing (TRF). Since the global warming
trend is common to all temperature series, the sec-
ond term in the right-hand side of Eq. (3) becomes
n

n+kτ
r f
t . In the case of the local warming trends,

there are at most k
n+k common trends (note that the

normalizing factors are such that n
n+k + k

n+k = 1).
However, for this condition to occur, all urban loca-
tions should share the same warming trend. This is
unlikely since the drivers of the local warming trend
(i.e., urbanization, land-use change, and aerosols
emissions, among others) are quite heterogeneous
so that the local trends are expected to have unique
features. Hence, the temperature series for each city
contains the global warming trend τr f , which is
identical for all cities since it is imparted by globally
aggregated radiative forcing. However, in addition,
cities experience a local warming trend caused by
UHI and other local factors, denoted by τut, j, which
is city-specific, as it responds to a particular combi-
nation of local drivers (e.g., population, city shape,
vegetation, water bodies, and pollution).
With local warming trends being heterogeneous

and each weighted by a normalizing factor equal to
1

n+k , the local trends get diluted, while the global
warming trend becomes clearer at the regional scale
due to averaging. As m gets larger than k, urban
warming has less influence on the magnitude of
large-scale warming and will not alter the shape of
the globalwarming trend present in large-scale tem-
peratures, nor modify its features. In this case, τt ≈
τ
r f
t,l . As mentioned in the introduction, in practice,
some residual effect of UHI can still be present and
this representation is only approximate, though as
we shall document still very useful.
The effects of natural variability oscillations of

large-scale processes, that is, the cyclical compo-
nents clst , are expected to be common to all local
temperature series within a selected region, while
idiosyncratic local variations, or local cyclical com-
ponents cloct,o, are unique or shared by a limited
number of locations. Averaging produces a clearer
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estimation of the common cycles and reduces the
effects of idiosyncratic local variations. Consider the
aggregate cyclical component:

ct = 1
n + d

d∑

o = 1
cloct,o + 1

n + d

n∑

q = 1
clst,q. (4)

For simplicity, we assume that all n series share
a common cycle and d of them have an addi-
tional unique cyclical component. Then, the com-
mon cycle is weighted by the normalizing factor n

n+d
and the idiosyncratic cycles by 1

n+d ; in the case of
common local cycles, they would be weighted at
most by d

n+d . As n gets larger than d, the cyclical
component of Treg

t is increasingly dominated by the
common large-scale variability component; that is,
ct ≈ clst , and the effects of local variability are negli-
gible. As in the previous case, this representation is
approximate as some residual regional oscillations
can be present, though still useful.
Owing to the existence of a common warming

trend, city temperatures (Turb
t ) can be represented as

a function of regional temperatures plus local trend
and cyclical components (τut,r, cloct,r ):

Turb
t,r = μ + bTreg

t + τut,r + cloct,r + vt . (5)

If urban and regional temperatures warm at the
same rate over long periods of time, then b = 1.
Imposing this coefficient restriction and subtracting
Treg
t from both sides of Eq. (5), we obtain:

Turb
t,r − Treg

t = μ + τut,r + cloct,r + vt,r = Turb_ f
t . (6)

Using Eq. (6), the common trend and cycle
produced by large-scale climate variability can-
cel out and the idiosyncratic trend and cyclical
components can be estimated. The effects of dif-
ferences in latitude and elevation could affect the
assumption that b = 1.We briefly discuss this issue.
The observed response of annual temperatures to
changes in external forcing was recently studied,
using similar methods as those used here, show-
ing that the transient response is only statistically
different from the other regions for the high lat-
itudes in the Northern Hemisphere, because of
the Arctic amplification phenomenon.46,51 While
absolute temperature values can show large spatial
variability, the change in temperatures due to mod-
ifications in globally aggregated radiative forcing
tends to be more spatially homogeneous.52,53 Some

studies suggest that elevation may amplify the rate
of warming,54 although these results are mixed and
some other studies have found no clear correla-
tions, arguing that the association may be due to
inhomogeneities in the data.55–57

Once Turb_ f
t is obtained, the magnitude of the

local warming component can be estimated, its fea-
tures can be described (i.e., identification of peri-
ods of faster/slower warming), and its drivers can
be investigated. However, it is important to con-
sider that in practice, τut, j may be contaminated by
the influence of regional factors not accounted for
by the large-scale warming trend and thus can be
an imperfect representation of the warming trend
generated by local factors. As such, the residual
warming trend can be expressed as τut, j = τu∗t, j +
ξt, j, where τu∗t, j is the true, unobserved warming
trend due to the UHI effect, and ξt, j is a distur-
bance component that can include the effect of mul-
tiple local factors other thanUHI (e.g., elevation and
vegetation), as well as regional trends that are not
included in τ

r f
t,l and a potential UHI bias in large-

scale temperature. As mentioned in the introduc-
tion, when large-scale temperatures are considered,
this effect is likely small but it can depend on the
region.38,58

In cities for which no local processes contribute
to the urban warming trend, Turb_ f

t would be a sta-
tionary process, as the common trendwould cancel.
We can test for remaining trends or other features
in Turb_ f

t that would indicate additional effects of
local factors on local temperatures. We focus on
two complementary representations of the nonsta-
tionarities in Turb_ f

t that provide useful information
about the effects of local factors, which can help to
identify their drivers. The first is the estimate of the
slope coefficient B in the following regression:

Turb_ f
t = a + BTimet + ∈t , (7)

which provides an estimate of how local factors
have contributed to making the warming rate at the
urban scale higher or lower across different cities
compared with the large-scale warming trend. Sec-
ond, Turb_ f

t can include nonlinearities, such as level
shifts. Estimates of the level shifts and their break
dates can be obtained using the following linear
regression model

Turb_ f
t = a + δ j + ut ,

(
j = 1, . . . ,m + 1

)
(8)

5Ann. N.Y. Acad. Sci. xxxx (2021) 1–17 © 2021 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals LLC on behalf of New York Academy of Sciences



Disentangling the warming trend in urban areas Estrada & Perron

and applyingmultiple break tests as described below
to estimate the value of the parameters δ j. The
results can suggest how local factors have modi-
fied the warming trend at the city scale, produc-
ing deviations from the common trend. If there are
level shifts in Turb_ f

t , their origin can be investigated
using proxy variables (such as population counts)
for factors related to local climate, such as urban-
ization and urban sprawl. Moreover, the dates of the
level shifts can be related to the occurrence of other
features in variables that influence local climate,
such as urbanization and population. The tests for
cotrending and structural change are described in
the following paragraphs.

Bierens nonparametric nonlinear cotrending
test
For the Bierens cotrending test,49 the common
nonlinear trend included in the time series does not
have to be parameterized. The vector of series zt is
modeled via the following trend noise decomposi-
tion zt = g(t ) + ut , where g(t ) = β0 + β1t + f (t ),
with zt a k-variate time series, ut a k-variate zero-
mean stationary process, and f (t ) a deterministic
k-variate general nonlinear trend function that
allows for structural changes. If there exists a
nonzero vector θ such that θ′ f (t ) = 0, the system
of variables zt is nonlinear cotrending. The null
hypothesis of this test is that the multivariate time
series zt is nonlinear cotrended, and one or more
linear combinations of the time series are stationary
around a constant or a linear trend. Note that this
test is a cointegration test when it is applied to
series that contain unit roots. The test is based on
the generalized eigenvalues of the matrices M1 and
M2 defined by M1 = T−1 ∑T

t = 1 F̂ (t/T )F̂ (t/T )′,
where F̂ (x) = T−1 ∑[Tx]

t = 1(zt − β̂0 − β̂1t ) if
x ∈ [T−1, 1] and F̂ (x) = 0 if x ∈ [0,T−1), β̂0
and β̂1 are the estimates of the vectors of inter-
cepts and slope parameters in a regression of
zt on a constant and a time trend. Also, M2 =
T−1 ∑T

t = m[m−1 ∑m−1
j = 0(zt− j − β̂0 − β̂1(t − j))]

[m−1 ∑m−1
j = 0(zt− j − β̂0 − β̂1(t − j))]′, where

m = Tα, with T the number of observations
and α = 0.5. Solving |M1 − λM2| = 0 and denot-
ing the solution of the largest rth eigenvalue by λ̂r,
the test statistic is T 1−αλ̂r . The null hypothesis
is that there are r cotrending vectors against the
alternative of r–1 cotrending vectors. The test has a

nonstandard distribution and the critical values are
tabulated in Bierens.49 The existence of r cotrending
vectors in r+1 series indicates the presence of r
linear combinations of the series that are stationary
around a linear trend so that these series share a
single common nonlinear deterministic trend. Such
a result indicates a strong secular comovement in
the r+1 series.

Bai–Perron multiple structural change test
Bai and Perron59–61 provided a framework to test
for multiple structural changes in which some of
the parameters in a regression model are allowed to
change atm unknown break dates. Consider the lin-
ear regression model withm breaks (m+1 regimes)
yt = x′

t β + z′
tδ j + ut , where j = 1, . . . ,m + 1, xt

and zt are vectors of covariates, β is a vector of fixed
coefficients, while δ j is a vector coefficients subject
to change across regimes, and ut is the error com-
ponent. The number of breaks and the break dates
(T1, . . . ,Tm) are unknown and estimated by min-
imizing the sum of squared residuals. Three dif-
ferent types of procedures are used to estimate the
breakpoints: (1) global maximizers of breakpoints;
(2) sequentially determined breakpoints; and (3) a
mixture of global and sequential procedures. Here,
we use the sequential L breaks versus L+1 breaks
procedure. The critical values for these tests were
tabulated by Bai and Perron.61

Data
City-level annual surface air temperature data
were obtained from the National Oceanic and
Atmospheric Administration (NOAA; NOAA
National Centers for Environmental Information,
Climate at a Glance: City Time Series, published
October 2020, retrieved on October 10, 2020 from
https://www.ncdc.noaa.gov/cag/). Although these
time series were chosen by NOAA to represent
temperatures in cities, a significant portion are
in airports which are rarely close to the most
urbanized part of the city where the main UHI
is expected to be. This is a frequent limitation in
studies trying to characterize the UHI effect as
the intensity of the UHI is likely underestimated.
The region of study extends over the coordi-
nates −90°E to −65°E and 35°N to 50°N, and the
average large-scale temperatures for this domain
were obtained from the NOAA GlobalTemp_v5.0
merged land–ocean surface temperature dataset62
and processed in the KNMI Climate Explorer data
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portal (https://climexp.knmi.nl/). Note that this
region covers an area of about 3.5 million km2 and,
as discussed previously, the effect of any single city
temperature series on the area-weighted average
is expected to be small or negligible. Temperature
records for cities located within this domain were
considered if they had no more than two consec-
utive missing observations. The missing data were
filled in using linear interpolation between adjacent
observations. A total of 30 cities were then selected
for the analysis (Table 1; see Table S1, online only,
for station location, name, and details). These cities
are located in 18 states: New York, Massachusetts,
Maine, Michigan, Pennsylvania, Virginia, Wis-
consin, West Virginia, Kentucky, Washington DC,
Indiana, Maryland, Illinois, North Carolina, Ohio,
Vermont, Tennessee, and New Hampshire. Figure
S1 (online only) shows the region of study and
the location of each station, while Figures S3–S32
(online only) provide a satellite image of each
city and the station position. Most are located
in airports and parks. However, some have been
integrated into the city or are now located in signif-
icantly urbanized areas (e.g., Figs. S1, S2, S13, and
S23, online only), while some are in moderately
urbanized or almost rural areas (e.g., Figs. S10,
S11, and S19, online only). Seven of the chosen
cities have observations for the period 1895–2019,
while the temperature series for the others have
shorter samples (Table 1; Fig. S2, online only). Data
on the elevation of the weather station are from
https://www.ncdc.noaa.gov/cag/city/data-info
(Table S1, online only). Radiative forcing variables
were obtained from the Goddard Institute for
Space Studies of NASA (https://data.giss.nasa.gov/
modelforce/).63 The aggregated radiative forcing
variables used are the well-mixed greenhouse
gases (WMGHGs: carbon dioxide (CO2), methane
(NH4), nitrous oxide (N2O), and chlorofluorocar-
bons), and the TRF, which includes WMGHGs
plus ozone (O3), stratospheric water vapor, solar
irradiance, land-use change, snow albedo, black
carbon, reflective tropospheric aerosols, and the
indirect effect of aerosols. Figure S2 (online only)
shows the regional and city average annual temper-
atures, as well as TRF and WMGHGs. AMO was
obtained fromNOAA’s Physical Science Laboratory
(https://psl.noaa.gov/data/timeseries/AMO/).64
City population counts (Fig. 1) were obtained
from the Spatial History Project of the Cen-

ter for Spatial and Textual Analysis at Stanford
University.65

Results and discussion

Cotrending tests were first applied to the set of vari-
ablesWMGHGs, TRF, andTreg

t . The results strongly
suggest the existence of a single common nonlin-
ear trend between these series. Moreover, by con-
struction, it can be concluded that the trend is
imparted fromWMGHGs to TRF and toTreg

t (Table
S2, online only, first panel).45 Linking the cotrend-
ing test result to an energy balancemodel66,67 allows
to attribute a dominant part of the observed warm-
ing in Treg

t to anthropogenic forcing.45 We removed
the trend imparted by TRF to approximate the cycli-
cal component of Treg

t . This was done via the regres-
sion Treg

t = π + ϕTRFt + ∈t and defining Treg ∗
t =

∈t . Figure S33 (online only) shows that the low-
frequency cyclical component in Treg∗

t closely fol-
lows that in AMO.
Visual inspection of Figure S2 (online only)

suggests the existence of a possible common trend
between radiative forcing and regional and local
temperatures, although this trend is masked at
the local level by large variance and the effects
of local factors that can distort it. Applying the
cotrending test to groups of four time series con-
taining WMGHGs, TRF, Treg

t , and Turb
t for each

city allows to conclude that the same warming
trend is also present in temperatures at the city level
(Table S2, online only). As a sensitivity analysis
(Table S3, online only), the cotrending test was
also applied to groups consisting of (1) WMGHGs,
TRF, and each Turb

t , as well as to (2) TRF and
each Turb

t . In all cases, the conclusion is the same:
at least part of the warming trend present in
both regional and city-level temperatures can be
attributed to globally aggregated anthropogenic
forcing.
Table 1 shows the estimated slope parameters B

in Eq. (7) for each city. Most of the filtered tem-
perature series (Turb_ f

t ) still contain a trend that
in most cases indicates a faster warming than the
regional rate (see also Fig. 2). These trends represent
the excess warming relative to the large-scale tem-
peratures. This finding suggests that local factors
had a considerable influence over the climate at the
local scale and amplified the warming experienced
regionally. The trends are significant for about 77%
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Table 1. Estimates of local warming rates, shifts in mean, and peak populations

Sample
B °C/100
years δ1 δ2 Pop peak

New Yorku

(New York)
1895−2019

(125)
1.04∗∗ 8,475,980

Bostonu

(Massachusetts)
1936−2019

(84)
0.66∗∗ 0.36

[1949]
0.27
[1990]

801,444
[1950]

Portlandu

(Maine)
1895−2019

(125)
0.63∗∗ 0.47

[1947]
77,634
[1950]

Muskegonu

(Michigan)
1915−2019

(105)
0.48∗∗ 0.43

[1953]
48,429
[1950]

Erieu

(Pennsylvania)
1926−2019

(94)
0.74∗∗ 0.46

[1959]
138,440
[1960]

Norfolku

(Virginia)
1911−2019

(109)
0.21∗ 0.28

[1989]
307,951
[1970]

Green Bayr

(Wisconsin)
1895−2019

(125)
0.25∗ 0.38

[1987]
104,879

Elkinsr

(West Virginia)
1926−2019

(94)
−0.35∗ 9121

[1950]
Lexingtonr

(Kentucky)
1895−2019

(125)
−0.06 323,780

Allentownu

(Pennsylvania)
1925−2019

(95)
1.35∗∗ 0.45

[1964]
0.47
[1990]

122,623

Buffalou

(New York)
1895−2019

(125)
0.05 256,052

[1950]
Albanyu

(New York)
1895−2019

(125)
0.33∗∗ 0.29

[1949]
96,853
[1950]

Washington Reaganu

(Washington DC)
1946−2019

(74)
0.81∗∗ 0.23

[1964]
0.29
[1989]

720,687
[1950]

Philadelphiau

(Pennsylvania)
1948−2019

(72)
1.08∗∗ 0.45

[1990]
2,071,605
[1950]

South Bendu

(Indiana)
1948−2019

(72)
0.14 132,445

[1960]
Baltimoreu

(Maryland)
1940−2019

(80)
0.53∗∗ 0.27

[1985]
949,708
[1950]

Springfieldr

(Illinois)
1901−2019

(119)
−0.39∗∗ −0.31

[1974]
116,250

Syracuser

(New York)
1939−2019

(81)
0.25 220,583

[1950]
Indianapolisu

(Indiana)
1948−2019

(72)
0.36 820,445

Charlotter

(North Carolina)
1940−2019

(80)
0.45∗ 731,424

Milwaukeeu

(Wisconsin)
1939−2019

(81)
1.71∗∗ 0.86

[1984]
741,324
[1960]

Clevelandu

(Ohio)
1939−2019

(81)
0.74∗∗ 0.41

[1986]
914,808
[1950]

Sault Ste. Marieu

(Michigan)
1931−2019

(89)
0.51∗ 0.38

[1960]
18,722
[1960]

Burlingtonu

(Vermont)
1895−2019

(125)
0.51∗∗ 0.49

[1988]
42,417

Molineu

(Illinois)
1944−2019

(76)
0.10 46,407

[1980]
Continued
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Table 1. Continued

Sample
B °C/100
years δ1 δ2 Pop peak

Fort Wayner

(Indiana)
1941−2019

(79)
0.42∗ 253,691

Greensborou

(North Carolina)
1929−2019

(91)
0.16 269,666

Chattanoogau

(Tennessee)
1939−2019

(81)
0.50∗∗ 169,514

[1980]
Johnson Cityr

(Tennessee)
1938−2019

(82)
−0.48∗∗ −0.32

[1976]
63,152

Concordu

(New Hampshire)
1940−2019

(80)
0.52∗∗ 0.48

[1957]
42,695

Note: For the “Sample” column, the sample size is given in parentheses. ∗,∗∗ denote statistical significance at the 5% and 10% levels,
respectively. Standard errors were calculated using the Newey–West correction (using the default values in Stata). Superscripts r and u
denote stations for which the surroundings are mostly rural or urban, respectively. The number of breaks is determined using the Bai
and Perron methodology. Columns 4 and 5 present the estimate of the parameters from regression (8). Empty cells under δ1 indicate
no breaks, while empty cells under δ2 indicate no second break. The last column shows the population peaks, and the year in which
this peak was achieved is shown in brackets.

of the cities at the 10% level. The average slope
coefficient over all cities shows an excess rate of
warming of 0.44 °C (±0.12 °C SE) per century. A
few cities experienced relative cooling up to −0.48
°C per century (Johnson City, Elkins, and Spring-
field), whilemost experienced higher warming than
the regional average (e.g., NewYork, Allentown, and
Milwaukee), with somehaving excesswarming rates
higher than 1 °C per century. While all weather
stations selected by NOAA are intended to repre-
sent the climate conditions of cities, for some sta-
tions, the surroundings could be considered rural.
Determining whether a weather station can be con-
sidered rural or urban is not trivial,48 and here we
do not attempt such a formal classification. How-
ever, using Figures S3–S32 (online only), we iden-
tify eight stations with surrounding areas that are
predominantly rural (Table 1). The average trend at
these “rural” stations is 0.01 °C per century, while
for the remaining stations, this value is 0.60 °C. This
result can be interpreted as additional evidence sup-
porting the fact that the proposed methodology is
able to adequately separate global and local trends
and to capture at least part of the urbanization
effect. The presence of water bodies in the vicinity of
weather stations can also influence themagnitude of
the UHI.68,69 In our sample, for most cities (23 out
of 30), this measure is likely influenced by the pres-
ence of the sea, lakes, or rivers. However, these cities
also show high levels of urbanization and for the

vast majority, weather stations are located in highly
urbanized surroundings. By contrast, only seven
cities have no water bodies in their vicinities and,
among those, only two are in urbanized areas. The
average warming trend of stations in highly urban-
ized cities with water bodies is 0.56 °C, while this
value is 0.07 °C in the case of less urbanized cities
with no water bodies. Such results suggest that, in
our sample, the urbanization effect dominates that
induced by the presence of water bodies and that the
combination of these two factors does not allow dis-
tinguishing the decrease in UHI commonly associ-
ated with the presence of water bodies.70

As discussed in the literature, the estimates of
UHI can bemore precise when stations are grouped
according to the cities’ populations.16,71 We con-
sider groups of cities on the basis of population
peak being larger/smaller than 200,000 inhabitants,
yielding two subsamples of 15 cities each (Table 1).
Large cities have an average excess warming rate of
0.56 °C (±0.12 °C SE) per century, while for smaller
cities, this figure is 0.32 °C (±0.12 °C SE). The range
for large cities basically excludes relative cooling
(the lowest estimate being −0.06 °C per century),
while for smaller cities, the lowest value is −0.48
°C in 100 years. The largest value for larger cities is
1.71 °C, while for smaller cities, it is 1.35 °C.
We emphasize that τut, j cannot be interpreted

as a pure representation of the response to the
UHI effect, but of a blend of multiple factors. The
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Figure 1. Population counts per city for the period 1895–2010.

unobserved warming trend due to the UHI effect
τu∗t, j is distorted by ξt, j, which may include the effect
of factors other than UHI. However, as discussed
below, correlation analyses between population and
trend slopes and other characteristics suggest an
association between UHI and the residual warm-
ing. The estimated magnitude of warming caused
by local factors is similar to those reported in other
studies that address the attribution of the UHI effect
on temperature trends of urban stations.18,35,72,73
The average rate of warming of the 50 most pop-
ulous metropolitan regions in the United States
was estimated to be 0.16 °C per decade over the
period 1961–2010, with about 14 of them show-
ing no warming or a slight decline.73 In the case of
mainland China, the UHI effect at 45 stations was
estimated in the range of 0.05–0.11 °C per decade,18
while for Beijing andHebei, these estimates are 0.16
and 0.14, respectively.
Climate change is expected to modify the UHI,

and some studies have projected that its intensity

may decrease under very high emissions scenar-
ios, but should remain similar to current days for
moderate and low emissions scenarios (RCP4.5 and
RCP2.6). A recent study74 based on temperature
records for the period 2000–2015 proposed that the
decrease in UHI warming caused by global climate
change is already detectable in U.S. cities. For a
longer sample (1985–2015), the authors report that
they find no statistical differences between rural and
urban stations. This result contrasts with what is
found here and in much prior work, which has con-
sistently found a positive UHI effect in observed air
temperatures in the United States16,19,40,73 and other
parts of the world,5,18,34,38 as well as with climate
model projections in which significant decreases in
the UHI intensity occur only under very high emis-
sions scenarios for the end of the present century.22
The decrease in theUHI effect found by Scott et al.74
can be the result of low-frequency oscillations
that could dominate an underlying local warming
trend in periods of time as short as 2000–2015.
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Figure 2. Filtered local temperatures Turb_ f
t for the cities analyzed. Filtering of large-scale trend and cycle was done by subtract-

ing regional from local temperatures, as described by Eq. 6.

Moreover, for a given region, depending on the
selection of rural and urban stations, different
results can be obtained.16,35,48,75

As mentioned in the introduction, urbanization
is a dominant factor impacting the city’s overall cli-
mate, and population count is commonly positively
correlated with the UHI intensity.8,16,24 To provide
insights about the origin of the excess warming
rate observed in local temperatures, we calculated
the correlation between the estimates of the coef-

ficient B and the natural logarithm of population
counts for each city, measured by the population
peak (see Fig. 1 and Table 1, which also indicates
when the peak occurred). As expected from the lit-
erature, the highest excess warming rates due to
local factors occur in cities with the largest popula-
tions. The sample correlation (henceforth denoted
by ρ) between local warming rate estimates and
peak populations is 0.48 when considering all cities
and 0.53 when only the statistically significant slope
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Figure 3. Scatterplots of excess warming rates and peak population. Panel A shows the results for all cities, while panels B and C
show the results for large cities (>200,000 inhabitants) and small cities (≤200,000 inhabitants), respectively.

coefficients are included. Moreover, this relation-
ship becomes stronger when only large cities are
considered (ρ = 0.64), while it is weaker for smaller
cities (ρ = 0.30). These results are depicted in
Figure 3 and suggest that warming rates are associ-
ated with the extension and density of urban areas,
as they are highly correlatedwith population counts.
It is important to underline that these estimates sug-
gest association, not causality. Moreover, the loca-
tion of the stations may bias downward the esti-
mated correlation coefficients, as some of them are
in the outskirts of the cities where the UHI effect
would be smaller. This could also explain why the
correlation between the coefficient B and popula-
tion is higher for large cities, as in most of them,
the urban sprawl has integrated airports that were
initially located in the outskirts. Correlation coeffi-
cients between average population growth rate and
slope coefficients lead to a similar conclusion, but

the magnitude of the correlations is lower, proba-
bly because the absolute value of population is bet-
ter suited for inferring the UHI effect than using the
growth rates.
Such relationships can be modulated by several

other natural and anthropogenic factors repre-
sented by ξt, j, which include city morphology,
vegetation, elevation, where the station is located
(i.e., close to downtown or in the outskirts), among
others. In the case of smaller cities, the factors
included in ξt, j tend to lead to a higher variabil-
ity in the estimated warming rates and thus to
weaker correlations between population and urban
warming (Fig. 3B and C). The differences in the
magnitude of the correlation coefficients suggest
that as cities become larger and more populated,
the local effects tend to be dominated by the UHI. A
natural determinant of the observed local warming
rates is the elevation at which the station is located.
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The correlation between the estimated local warm-
ing trends and elevation is –0.54 when considering
all cities, indicating that UHI effects are smaller as
elevation increases. However, this relationship is
much weaker for large cities (ρ = −0.35) than for
small ones (with ρ = –0.64). These results reinforce
the conclusion that as cities become larger, other
factors that influence urban warming rates become
less important.
The proposedmethodology and results discussed

above provide information about the effects of local
factors on the urban warming trend through time.
Features, such as level shifts created by local factors
that modify the shape of the common warming
trend, can provide additional insights to identify
some of the most important drivers of the warming
at the local scale. This can help to discriminate what
factors in τut, j are more closely associated with the
characteristics of τu∗t, j thanwith those of ξt, j. In some
cases, distinguishing between a linear trend and
a sudden or gradual shift in mean is difficult and
both approaches can provide relevant information.
The filtered local temperatures Turb_ f

t for each city
depicted in Figure 2 suggest that some share similar
features about the local warming evolution. The
most notable feature is a possible level shift toward
warmer temperatures during the mid-20th century.
To formally test for the existence of such level shifts
in filtered temperatures, we apply theBai andPerron
methodology to test formultiple structural changes.
Note that the representation of these breaks in the
mean value as a sudden change is a convenient sim-
plification. As can be seen from Figure 2, most of
these changes are not abrupt but, in most cases, take
more than a decade to attain their new level. Note
that the tests will be consistent even in the presence
of smooth or gradual changes. The estimates of the
break dates are then interpreted as the date, within
the period of change, that is most representative of
the separation between the pre and postregimes.
We applied this methodology to all city tempera-
ture series using regression (8). We used the AIC
criterion to compare the linear trend and the shift
in mean models and decide which one provides a
better fit. The results in Table 1 show that nine of
the analyzed temperature series contain a level shift
toward warmer temperatures occurring around
the mid-20th century that is significant at the 5%
level (using the Bai and Perron methodology).
The magnitude of these shifts in mean is strongly

correlated (ρ = 0.86) with the estimated B coeffi-
cients. This reinforces the notion put forward that
warming amplification and rapid changes in local
temperatures are affected by common local drivers.
For 57% of the total cases, the shift in mean

model produced lower AIC values than the trend
model (Table 1). For most, a single shift was signif-
icant; only in three cases (Boston, Allentown, and
Washington) was a second shift deemed significant.
The average magnitude of the first mean shift is
0.33 °C. The estimated dates of the shifts in mean
for the various cities are positively correlated with
the dates when the population peak was reached
(ρ = 0.45). In the case of cities having reached a
peak in population (18 out of 30), the average peak
date is 1957, while for cities for which a shift in
the mean of Turb_ f

t was found (17 out of 30), the
average break date is 1969. Many of the cities that
show a shift in the mean of Turb_ f

t (11 out of 17)
are smaller ones with peak populations lower than
200,000 inhabitants. For cities that show both a peak
in population and a shift in mean, the correlation
between the estimated dates for the shift in mean
and the population peak is positive and very high
(ρ = 0.93), although the number of observations is
only 5. These results suggest that urbanization and
urban sprawling would significantly slow down (or
stop) some years after population count stabilizes
and local warming would achieve a new level after
the peak.
This may be clearer in smaller cities because the

population peaks occur over a shorter span and are
thus easier to detect given the time period avail-
able. Our results suggest that while population (and
urbanization) is growing, the main effect of this
growth is better captured by the estimated B coef-
ficients. However, when population (urbanization)
stabilizes, the effects of the level of urbanization
attained are better expressed as a change in the
mean. The overall results in this section strongly
suggest that there is a strong association between the
local warming, population count, and features that
are city-specific, such as whether a peak in popula-
tion occurred.

Conclusions

Wepresented amethodology to conduct attribution
studies for an urban temperature series that allows
separating the contribution of global and local
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forcing factors. Cotrending tests are used to estab-
lish the existence of a common trend between glob-
ally aggregated TRF, its main global anthropogenic
component, and large-scale and local temperature
series. We show that at least part of the observed
warming trend in all cities has an anthropogenic
origin. In the proposedmethodology, the trend that
corresponds to globally aggregated forcing factors
is removed from the local temperature series and
the existence of a local excess warming trend is
evaluated and its features are characterized. Our
results indicate that the vast majority of the cities
(26 out of 30) analyzed show additional warming
due to local factors and suggest that one of the main
drivers is urbanization for which population count
acts as a useful proxy. Increases in temperature due
to urbanization and other local factors tend to level
off after a city reaches its population peak, while in
cities where population growth was uninterupted,
temperatures maintain a trending behavior beyond
the one attributed to global anthropogenic factors.
Larger cities show a stronger relationship between
local warming rates and population than smaller
cities in which other factors, such as city eleva-
tion, seem to add more variability to local warming
estimates.
Cities are important contributors to global green-

house emissions and can also be particularly vulner-
able to climate change. Given these characteristics
and their exposure with reference to population
and wealth concentrations, city-level climate policy
will have impacts not only at the local and regional
levels, but also at the national and global scales.
Understanding the different local and global drivers
behind urban warming and the heterogeneity in the
trends they generate is important to help decision
makers design better mitigation and adaptation
portfolios for risk reduction and management.
Given the wide heterogeneity in the relation
between regional and municipal warming, one
could identify so-called “green cities” as having a
negative slope in the filtered trend andmore so if the
change in mean is negative; that is, a decreasing rate
of excess warming even controlling for a positive
increase in population.However, this is complicated
by the common practice of placing weather stations
in airports near the outskirts of the main urbaniza-
tion center. Thismeans that, whilemost cities in our
analysis show additional local warming, the results
obtained could be underestimating the UHI effect

that corresponds to the central part of the cities.
The problem is illustrated most notably by the
case of Springfield (Illinois; Fig. S19, online only)
and others, such as Lexington (Kentucky; Fig. S11,
online only) in which the “green city” effect could
be mainly attributed to the distance of the station
to the city center. While the sample size is too small
and a larger number of stations within a given city
would be needed, it would be interesting to analyze
in future work the features that may cause such dif-
ferences with the majority of cities that experienced
higher warming rate relative to the regional level.
Also, the UHI effect shows strong seasonal and
diurnal variation, with nighttime warming being
commonly greater.76,77 This is of particular impor-
tance since most of the local adaptation options to
mitigate the UHI and the combined negative effects
of global and local warming are less effective for
the nighttime UHI, which is related to increasing
health risks.76 Thus, it would be useful to apply the
methods presented here to different seasons and to
daytime and nighttime temperatures to provide a
more complete characterization of the UHI effect.
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